Forecasting S&P 500 Index:
ARIMA + GARCH, Neural Networks, and Support Vector Machine Models

Natalia Gust-Bardon

September, 2019

Introduction

The aim of this project is to present models that can be used for forecasting on time series
problems. We train our models on S&P 500 Index (Yahoo Finance) from 1995-01-01 to
2018-08-01. The test set comprises 12 months (2018-09-01 to 2019-08-01). We present three
methods: ARIMA + GARCH, Neural Networks, and Support Vector Machine.

Figure 1 S&P 500: 1995 - 2018

Closing Values
1500 2000 2500
| 1

1000
1

500
1

1995 2000 2005 2010 2015

Time

Figure 1 presents our training set.

1. ARIMA + GARCH Model

Figure 2

Decomposition of multiplicative time series

observed

trend

seasonal

random

Time

https://finance.yahoo.com/quote/%5EGSPC/history/

Based on Figure 2, we conclude the following:

- The trend is not linear. It has three visible picks (2000, 2008, and 2015)
« There is no significant seasonal effect

« The random component seems to have a constant mean

« We can see high volatility

Conclusion: because of high volatility, an ARIMA model would have failed to capture this

phenomenon, as it assumes constant variance of the errors. To get rid of the trend, we take the
first differences of the S&P500 Index.

Figure 3 Time Series Plot of the First Differences of S&P 500: 1995 - 2018

0 50 100 150
I I I I

-50
I

First Difference of S&P 500

-200 -150 -100
I

1995 2000 2005 2010 2015

Time

The general upward trend has now disappeared, no seasonality is observed. The mean seems
to be stable around 0, the changes in the variance are worrisome (Figure 3).

Figure 4 ACF plot of First Difference of S&P 500

0.10
I

ACF
05

-0.05 0.0
I

-0.10

0.10

0.05
I

Partial ACF
0.00

-0.05

-0.10

Based on ACF and PACF plots (Figure 4, Figure 5) we can conclude that the S&P500 Index

follows a random walk process (ARIMA(0,1,0)). The auto.arima() function in R proves the same.
Nonetheless, we violate the constant variance assumption.

We fit the ARIMA + GARCH model using garchFit() function. Table 1 shows the summary of the
model.

Table 1

Title:
GARCH Modelling

Call:
garchFit(formula = ~arma(@, @) + garch(l, 1), data = dl, trace = FALSE)

Mean and Variance Equation:
data ~ arma(@, @) + garch(l, 1)
<environment: @x7fa5033078f8>
[data = d1]

Conditional Distribution:
norm

Coefficient(s):
mu omega alphal betal
10.16697 111.71365 0.25128 0.74667

Std. Errors:
based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>1tl)
mu 10.16697 2.49794 4.070 4.7e-05 ***
omega 111.71365 77.09033 1.449 0.147302
alphal ©0.25128 0.07274 3.454 0.000551 ***
betal 0.74667 0.06448 11.580 < Ze-16 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ ©0.01 ‘*’ @.05 ‘.” 0.1 * ’ 1

Figure 6

Obtained and Predicted Values (Sep 2018 — Aug 2019)

4000~

3500~

S&P500 Index

3000-

2500-

Oct 2018 Jan 2019 Apr 2019 Jul 2019
Time

The predicted values skyrocket away from the observed values (Figure 6).

ARIMA + GARCH model does not look like a good fit for our data.

2. Neural Network

In this section, we use feed-forward neural network with a single hidden layer and lagged
inputs for forecasting S&P 500 Index using nnetar() function in R.

Figure 7

Obtained and Predicted Values (Sep 2018 — Aug 2019)

3000~ ////_‘

2900~

S&P500 Index

2700~

2600~

2500-
Ju 2019

0ct 2018 Jan 2019 Apr 2019
Time
Figure 8
Forecasts from NNAR(1,1,2)[12]
3000~
o
o
ml
o 2000~
w
1000~
1995 2000 2005 2010 2015 2020
Time

Figure 7 and Figure 8 present the forecast.

3. Support Vector Machines (SVM)

We use tune.svm() function to find the best gamma and cost arguments. Subsequently, we use

svm() function to fit the model.

Figure 9

Obtained and Predicted Values (Sep 2018 — Aug 2019)

3000-

2900~

3
8
8

S&P500 Index

2700~
2600~
Jul 2019

Jan 2019 Apr 2019

Oct 2018
Time

Figure 9 shows the predicted values.

Summary

Figure 10

Obtained and Predicted Values (Sep 2018 — Aug 2019): ARIMA+GARCH, Neural Networks, SVM

4000~

3500-

S&P500 Index

3000~

2500

Jul 2019

Oct 2018 Jan 2019 Apr 2019
Time

Figure 10 shows that the closest prediction to the actual S&P 500 Index was provided by the
Neural Networks Model and the Support Vector Machines Model.

Attachment

loading data
sp_50@ <- ts(GSPCSAdj.Close, start=c(1995,1), end-c(2018,8), freg-12)

Decomposision
plot(decompose(sp_500, type = "multi"))

acf(sp_500)

pacf(sp_500)

dl <- diff(sp_500, differences = 1)

plot(dl, ylab = 'First Difference of S&P 500', main = 'Time Series Plot of the First Differences of S&P 500: 1995 - 2018')

acf(dl, main = 'ACF plot of First Difference of S&P 500')
pacf(dl, main = 'PACF plot of First Difference of S&P 500')

Test for stationarity

Box.test(dl, lag-20, type = 'Ljung-Box')
auto.arima(sp_500)

model_1 <- arima(sp_500, order = c(O,l,O)ﬂ

sp_50@_full <- ts(GSPCSAdj.Close, start=c(1995,1), end-c(2019,8), freg-12)
pred <- predict(model_1, n.ahead=12)

model_1_pred <- pred$pred

plot(model_1_pred)
ARIMA + GARCH Model and Predictions

garch.fit <- garchFit(formula = ~arma(@, @) + garch(1l, 1), data F dl, trace = FALSE)
garch.pred <- predict(garch.fit, n.ahead = 12, trace = FALSE, mse=c('cond'))

garch.forecast <-ts(garch.pred[,1]+garch.pred[,2])
sp_500_last_value <- sp_500[length(sp_500)

garch.fc.og <-c()
for(i in 1:12){
garch.fc.ogli] <- sp_500_last_value +
sum(garch.forecast[1:1])

}

garch.fc.og

ARIMA + GARCH Model Prediction Plot
actual <- GSPC$Adj.Close[285:296]

X <- seq(as.Date("2018-09-01"), by="1 month", length.out=12)
varl <- c(actual)

varz <- c(garch.fc.og)

df <- data.frame(x, varl, var2)

p <- ggplot(df, aes(x)) +
geom_line(aes(y=varl), colour="black") +
geom_line(aes(y=var2), colour="red") +
labs(y="5&P50@ Index", x = "Time") +
ggtitle("Obtained and Predicted Values (Sep 2018 - Aug 2019)")

Neural Network Model

fit <- nnetar(sp_500, lambda-0)
autoplot(forecast(fit,h=12))
autoplot(forecast(fit,h=12, PI=TRUE))

forecast(fit,h=12)
Neural Network Plot

for_nn <- as.numeric(forecast(fit,h=12)%mean)

X <- seq(as.Date("2018-09-01"), by="1 month", length.out=12)
varl <- c(actual)

df <- data.frame(x, varl, for_nn)

n <- ggplot(df, aes(x)) +
geom_line(aes(y=varl), colour="black") +
geom_line(aes(y=for_nn), colour="red") +
labs(y="S&P500 Index", x = "Time") +
ggtitle("Obtained and Predicted Values (Sep 2018 - Aug 2019)")

n
SVM Model

monthly_data <- GSPC5Adj.Close[1:284]
months <- 1:284

DF <- data.frame(months,monthly_data)
colnames(DF)<-c("x","y")

tuned_parameters <- tune.svm(y-x, data = DF, gamma = 10/(-5:-1), cost = 10/(-3:1))
summary(tuned_parameters)

svmodel <- svm(y ~ Xx,data=DF, type="eps-regression”,fkernel="radial",cost=10, gamma=0.1)

SVM ploting predicted values

nd <- 285:296

pred_svm <- predict(svmodel, newdata=data.frame(x=nd))

X <- seq(as.Date("2018-09-01"), by="1 month", length.out=12)
varl <- c(actual)

df <- data.frame(x, varl, pred_svm)

s <- ggplot(df, aes(x)) +
geom_line(aes(y=varl), colour="black") +
geom_line(aes(y=pred_svm), colour="red") +
labs(y="S&P500 Index", x = "Time") +
ggtitle("Obtained and Predicted Values (Sep 2018 - Aug 2019)")

w

Summary

summary_data <- data.frame(

date = seqg(as.Date("2018-09-01"), by="1 month", length.out=12),

varl = c(actual),

varZ = c(garch.fc.og),

for_nn = as.numeric(forecast(fit,h=12)%mean),

pred_svm = predict(svmodel, newdata-=data.frame(x=nd)),

names = c("Real values", "ARIMA+GARCH", "Neural Networks", "SVM")
2

summary_data_long <- melt(summary_data, id='date"')

ggplot(summary_data_long, aes(x-date, y=value)) +
geom_line(aes(color=variable, linetype = variable)) +
labs(y="S&P500 Index", x = "Time") +
ggtitle("Obtained and Predicted Values (Sep 2018 - Aug 2019): ARIMA+GARCH, Neural Networks, SVM ") +
scale_color_manual(values = c("black”, "red", "red", "red")) +
theme(legend.position="none")

