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Introduction

The aim of this project is to present models that can be used for forecasting on time series
problems. We train our models on S&P 500 Index (Yahoo Finance) from 1995-01-01 to
2018-08-01. The test set comprises 12 months (2018-09-01 to 2019-08-01). We present three
methods: ARIMA + GARCH, Neural Networks, and Support Vector Machine.
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Figure 1 presents our training set.

1. ARIMA + GARCH Model
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https://finance.yahoo.com/quote/%5EGSPC/history/

Based on Figure 2, we conclude the following:

- The trend is not linear. It has three visible picks (2000, 2008, and 2015)
« There is no significant seasonal effect

« The random component seems to have a constant mean

« We can see high volatility

Conclusion: because of high volatility, an ARIMA model would have failed to capture this

phenomenon, as it assumes constant variance of the errors. To get rid of the trend, we take the
first differences of the S&P500 Index.

Figure 3 Time Series Plot of the First Differences of S&P 500: 1995 - 2018
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The general upward trend has now disappeared, no seasonality is observed. The mean seems
to be stable around 0, the changes in the variance are worrisome (Figure 3).

Figure 4 ACF plot of First Difference of S&P 500
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Based on ACF and PACF plots (Figure 4, Figure 5) we can conclude that the S&P500 Index

follows a random walk process (ARIMA(0,1,0)). The auto.arima() function in R proves the same.
Nonetheless, we violate the constant variance assumption.

We fit the ARIMA + GARCH model using garchFit() function. Table 1 shows the summary of the
model.

Table 1

Title:
GARCH Modelling

Call:
garchFit(formula = ~arma(@, @) + garch(l, 1), data = dl, trace = FALSE)

Mean and Variance Equation:
data ~ arma(@, @) + garch(l, 1)
<environment: @x7fa5033078f8>
[data = d1]

Conditional Distribution:
norm

Coefficient(s):
mu omega alphal betal
10.16697 111.71365 0.25128 0.74667

Std. Errors:
based on Hessian

Error Analysis:

Estimate Std. Error t value Pr(>1tl)
mu 10.16697 2.49794 4.070 4.7e-05 ***
omega 111.71365 77.09033 1.449 0.147302
alphal ©0.25128 0.07274 3.454 0.000551 ***
betal 0.74667 0.06448 11.580 < Ze-16 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ ©0.01 ‘*’ @.05 ‘.” 0.1 * ’ 1

Figure 6

Obtained and Predicted Values (Sep 2018 — Aug 2019)
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The predicted values skyrocket away from the observed values (Figure 6).

ARIMA + GARCH model does not look like a good fit for our data.



2. Neural Network

In this section, we use feed-forward neural network with a single hidden layer and lagged
inputs for forecasting S&P 500 Index using nnetar() function in R.

Figure 7

Obtained and Predicted Values (Sep 2018 — Aug 2019)
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Figure 7 and Figure 8 present the forecast.



3. Support Vector Machines (SVM)

We use tune.svm() function to find the best gamma and cost arguments. Subsequently, we use

svm() function to fit the model.

Figure 9
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Figure 9 shows the predicted values.

Summary

Figure 10

Obtained and Predicted Values (Sep 2018 — Aug 2019): ARIMA+GARCH, Neural Networks, SVM
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Figure 10 shows that the closest prediction to the actual S&P 500 Index was provided by the
Neural Networks Model and the Support Vector Machines Model.



Attachment

# loading data
sp_50@ <- ts(GSPCSAdj.Close, start=c(1995,1), end-c(2018,8), freg-12)

# Decomposision
plot(decompose(sp_500, type = "multi"))

acf(sp_500)

pacf(sp_500)

dl <- diff(sp_500, differences = 1)

plot(dl, ylab = 'First Difference of S&P 500', main = 'Time Series Plot of the First Differences of S&P 500: 1995 - 2018')

acf(dl, main = 'ACF plot of First Difference of S&P 500')
pacf(dl, main = 'PACF plot of First Difference of S&P 500')

# Test for stationarity

Box.test(dl, lag-20, type = 'Ljung-Box')
auto.arima(sp_500)

model_1 <- arima(sp_500, order = c(O,l,O)ﬂ

sp_50@_full <- ts(GSPCSAdj.Close, start=c(1995,1), end-c(2019,8), freg-12)
pred <- predict(model_1, n.ahead=12)

model_1_pred <- pred$pred

plot(model_1_pred)
# ARIMA + GARCH Model and Predictions

garch.fit <- garchFit(formula = ~arma(@, @) + garch(1l, 1), data F dl, trace = FALSE)
garch.pred <- predict(garch.fit, n.ahead = 12, trace = FALSE, mse=c('cond'))

garch.forecast <-ts(garch.pred[,1]+garch.pred[,2])
sp_500_last_value <- sp_500[length(sp_500)

garch.fc.og <-c()
for(i in 1:12){
garch.fc.ogli] <- sp_500_last_value +
sum(garch.forecast[1:1])

}

garch.fc.og

# ARIMA + GARCH Model Prediction Plot
actual <- GSPC$Adj.Close[285:296]

X <- seq(as.Date("2018-09-01"), by="1 month", length.out=12)
varl <- c(actual)

varz <- c(garch.fc.og)

df <- data.frame(x, varl, var2)

p <- ggplot(df, aes(x)) +
geom_line(aes(y=varl), colour="black") +
geom_line(aes(y=var2), colour="red") +
labs(y="5&P50@ Index", x = "Time") +
ggtitle("Obtained and Predicted Values (Sep 2018 - Aug 2019)")



# Neural Network Model

fit <- nnetar(sp_500, lambda-0)
autoplot(forecast(fit,h=12))
autoplot(forecast(fit,h=12, PI=TRUE))

forecast(fit,h=12)
# Neural Network Plot

for_nn <- as.numeric(forecast(fit,h=12)%mean)

X <- seq(as.Date("2018-09-01"), by="1 month", length.out=12)
varl <- c(actual)

df <- data.frame(x, varl, for_nn)

n <- ggplot(df, aes(x)) +
geom_line(aes(y=varl), colour="black") +
geom_line(aes(y=for_nn), colour="red") +
labs(y="S&P500 Index", x = "Time") +
ggtitle("Obtained and Predicted Values (Sep 2018 - Aug 2019)")

n
# SVM Model

monthly_data <- GSPC5Adj.Close[1:284]
months <- 1:284

DF <- data.frame(months,monthly_data)
colnames(DF)<-c("x","y")

tuned_parameters <- tune.svm(y-x, data = DF, gamma = 10/(-5:-1), cost = 10/(-3:1))
summary(tuned_parameters )

svmodel <- svm(y ~ Xx,data=DF, type="eps-regression”,fkernel="radial",cost=10, gamma=0.1)

# SVM ploting predicted values

nd <- 285:296

pred_svm <- predict(svmodel, newdata=data.frame(x=nd))

X <- seq(as.Date("2018-09-01"), by="1 month", length.out=12)
varl <- c(actual)

df <- data.frame(x, varl, pred_svm)

s <- ggplot(df, aes(x)) +
geom_line(aes(y=varl), colour="black") +
geom_line(aes(y=pred_svm), colour="red") +
labs(y="S&P500 Index", x = "Time") +
ggtitle("Obtained and Predicted Values (Sep 2018 - Aug 2019)")

w



# Summary

summary_data <- data.frame(

date = seqg(as.Date("2018-09-01"), by="1 month", length.out=12),

varl = c(actual),

varZ = c(garch.fc.og),

for_nn = as.numeric(forecast(fit,h=12)%mean),

pred_svm = predict(svmodel, newdata-=data.frame(x=nd)),

names = c("Real values", "ARIMA+GARCH", "Neural Networks", "SVM")
2

summary_data_long <- melt(summary_data, id='date"')

ggplot(summary_data_long, aes(x-date, y=value)) +
geom_line(aes(color=variable, linetype = variable)) +
labs(y="S&P500 Index", x = "Time") +
ggtitle("Obtained and Predicted Values (Sep 2018 - Aug 2019): ARIMA+GARCH, Neural Networks, SVM ") +
scale_color_manual(values = c("black”, "red", "red", "red")) +
theme(legend.position="none")



